Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels.

نویسندگان

  • Yu-Jer Hwang
  • Jillian Larsen
  • Tatiana B Krasieva
  • Julia G Lyubovitsky
چکیده

Genipin, a natural cross-linking reagent extracted from the fruits of Gardenia jasminoides, can be effectively employed in tissue engineering applications due to its low cytotoxicity and high biocompatibility. The cross-linking of collagen hydrogels with genipin was followed with one-photon fluorescence spectroscopy, second harmonic generation, fluorescence and transmission electron microscopy. The incubation with genipin induced strong auto-fluorescence within the collagen hydrogels. The fluorescence emission maximum of the fluorescent adducts formed by genipin exhibit a strong dependence on the excitation wavelength. The emission maximum is at 630 nm when we excite the cross-linked samples with 590 nm light and shifts to 462 nm when we use 400 nm light instead. The fluorescence imaging studies show that genipin induces formation of long aggregated fluorescent strands throughout the depth of samples. The second harmonic generation (SHG) imaging studies suggest that genipin partially disaggregates 10 μm "fiberlike" collagen structures because of the formation of these fluorescent cross-links. Transmission electron microscopy (TEM) studies reveal that genipin largely eliminates collagen's characteristic native fibrillar striations. Our study is the first one to nondestructively follow and identify the structure within collagen hydrogels in situ and to sample structures formed on both micro- and nanoscales. Our findings suggest that genipin cross-linking of collagen follows a complex mechanism and this compound modifies the structure within the collagen hydrogels in both micro- and nanoscale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of genipin crosslinking on the micro- and nano- structure of collagen hydrogels

Our study is about modifying three-dimensional (3D) collagen hydrogels with a genipin compound. Specifically, the study set out to answer a question if genipin crosslinking modifies the nanoand microstructure of collagen and to establish for the first time a combination of methods to follow this process in-situ and in real time. We examined the genipin cross-linked collagen hydrogels with one-p...

متن کامل

Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere.

The possibility to fabricate marine collagen porous structures crosslinked with genipin under high pressure carbon dioxide is investigated. Collagen from shark skin is used to prepare pre-scaffolds by freeze-drying. The poor stability of the structures and low mechanical properties require crosslinking of the structures. Under dense CO2 atmosphere, crosslinking of collagen pre-scaffolds is allo...

متن کامل

Evaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method

Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...

متن کامل

Viscoelastic Properties of Polyacrylamide Nanocomposite Hydrogels Prepared in Electrolyte Media: Effect of Gelant Volume

In this work, nanocomposite (NC) hydrogels based on polyacrylamide/chromium triacetate were prepared at different reaction mixture (gelant) volumes and their crosslinking process and viscoelastic behaviors were studied. The X-ray diffraction (XRD) patterns taken from the NC hydrogels containing laponite nanoparticles did not show any distinct characteristic basal reflection for all of the NC hy...

متن کامل

Dynamic Properties of Degenerated Intervertebral Disc Can Be Better Recovered by Elevated Protein Crosslinking

INTRODUCTION: The feasibility of using crosslinking reagent, e.g., the genipin or methylglyoxal, to enhance the biomechanical functions of the injured or degenerated intervertebral disc has been extensively investigated. Our previous study found that genipin could recover the disc dynamic properties of mild denatured disc; however, the recovery efficiency was degraded by fatigue loading. Genipi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 3 7  شماره 

صفحات  -

تاریخ انتشار 2011